

... for a brighter future







A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

# Laser Trapping and Probing of Exotic Helium Isotopes

### Peter Müller

### **Outline**

Nuclear Charge Radii of <sup>8</sup>He

Beta-neutrino correlation study of <sup>6</sup>He

Laser Spectroscopy at CARIBU



## Neutron Halo Nuclei <sup>6</sup>He and <sup>8</sup>He

| Isotope | Half-life | Spin                  | Isospin | <b>Core + Valence</b> |
|---------|-----------|-----------------------|---------|-----------------------|
| He-6    | 807 ms    | <b>0</b> <sup>+</sup> | 1       | $\alpha + 2n$         |
| He-8    | 119 ms    | <b>0</b> <sup>+</sup> | 2       | $\alpha + 4n$         |







I. Tanihata et al., Phys. Lett. (1992)





#### **Green's Function Monte Carlo**





## **GFMC – Neutron and Proton Densities in Helium-4,6,8**





## **Atomic Isotope Shift**



For  $2^{3}S_{1} - 3^{3}P_{2}$  transition @ 389 nm:  $\delta v = \delta v_{MS} + C_{FS} \delta \langle r^{2} \rangle$ <sup>6</sup>He - <sup>4</sup>He :  $\delta v_{6,4} = 43196.202(16)$  MHz + 1.008 ( $\langle r^{2} \rangle_{He4} - \langle r^{2} \rangle_{He6}$ ) MHz/fm<sup>2</sup> <sup>8</sup>He - <sup>4</sup>He :  $\delta v_{8,4} = 64702.519(1)$  MHz + 1.008 ( $\langle r^{2} \rangle_{He4} - \langle r^{2} \rangle_{He8}$ ) MHz/fm<sup>2</sup> G.W.F. Drake, Univ. of Windsor, *Nucl. Phys. A737c, 25 (2004)* 

#### 100 kHz error in IS $\leftarrow \rightarrow \sim$ 1% error in radius



















## Switch & Scan



Two-detuning trap (hot and cold)

Power balance between the two opposing probe beams



## June 15th.... <sup>6</sup>He + <sup>8</sup>He Sample Spectra





#### **Isotope Shift and Field Shift : J - Dependence?**



## **Experimental Uncertainties and Corrections**

|             | TOTAL               | 35 kHz          | 63 kHz          |
|-------------|---------------------|-----------------|-----------------|
|             | Nuclear Mass        | 15 kHz          | 1 kHz           |
| Systematic  | Zeeman Shift        | 30 kHz          | 45 kHz          |
| ſ           | Probing Power Shift | 0 kHz           | 15 kHz          |
| C C         | Reference Laser     | 2 kHz           | 24 kHz          |
| Statistical | Laser Alignment     | 2 kHz           | 12 kHz          |
| -           | Photon Counting     | 8 kHz           | 32 kHz          |
|             |                     | <sup>6</sup> He | <sup>8</sup> He |

| Correcti | ons |
|----------|-----|
|----------|-----|

| Recoil Effect        | +110(0) kHz | +165(0) kHz |
|----------------------|-------------|-------------|
| Nuclear Polarization | -14(3) kHz  | -2(1) kHz   |

TITAN Penning Trap @ TRIUMF, V. L. Ryjkov et al., PRL 101, 012501 (2008)



## <sup>6</sup>He & <sup>8</sup>He RMS Point Proton and Matter Radii





### RMS Charge Radii <sup>:</sup> <sup>4</sup>He - <sup>6</sup>He - <sup>8</sup>He



1.681(4) fm 2.072(9) fm 1.961(16) fm



## **Beta-Neutrino Correlation in the Decay of 6He**



$$N(E_{\beta},\theta_{\beta\nu}) \propto 1 + \frac{a}{E_{\beta}} \cos \theta_{\beta\nu}$$

Best experimental limit:

$$a = -0.3343 \pm 0.0030$$
$$\frac{|C_T|^2 + |C_T'|^2}{|C_A|^2 + |C_A'|^2} \le 0.4\%$$

Johnson et al., Phys. Rev. (1963)





## **Beta-Neutrino Correlation in the Decay of 6He**



$$N(E_{\beta},\theta_{\beta\nu}) \propto 1 + \frac{a}{E_{\beta}} \cos \theta_{\beta\nu}$$

Best experimental limit:

 $a = -0.3343 \pm 0.0030$  $\frac{|C_T|^2 + |C_T'|^2}{|C_A|^2 + |C_A'|^2} \le 0.4\%$ 

Johnson et al., Phys. Rev. (1963)





Severijns et al, Rev. Mod. Phys. 78, 991 (2006).

LPC TRAP @ GANIL

#### RFQ Paul trap + Pulsed cavity Cooler-Buncher **Detection** setup RIB 6He+ LIRAT. ATT Handa 10<sup>4</sup> a = 1/310<sup>3</sup> 10 a = -1/3Counts Carring and a contraction of the second s 10<sup>2</sup> 10<sup>2</sup>∟ 500 550 600 650 700 750 800 Time of flight (ns) 10<sup>1</sup> data collection completed in 2008 10<sup>0</sup> 1000 2000 4000 3000

X. Flechard et al. PRL 101, 212504 (2008)

Argonne National Laboratory

Time of flight (ns)

- statistically:  $\delta a/a \sim 0.5\%$
- systematic under investigation



## **Beta-Decay Study with Laser Trapped 6He**





• <sup>6</sup>He trapping rate:  $1 \times 10^4$  s<sup>-1</sup>,

- $2 \times 10^5$  coincidence events in 15 min:  $\delta a = \pm 0.008$
- 1 week:  $\delta a/a = 0.1\%$



## CARIBU: Californium Rare Isotope Breeder Upgrade

Contact: Guy Savard, Richard Pardo, Physics Division, Argonne



http://www.phy.anl.gov/atlas/caribu.html



## **CARIBU** Layout





## Isotopic Menu for Laser Spectroscopy





| Isotopic M | lenu – "Lov | v Mass" |
|------------|-------------|---------|
|------------|-------------|---------|

|         |                        | RIBU    | CAF   | Laser Spectroscopy |           | Wavelengths, nm |         |    |    |
|---------|------------------------|---------|-------|--------------------|-----------|-----------------|---------|----|----|
|         | 1                      | > 100/s | Range | Method             | LS        | II              | I       |    |    |
|         |                        | 79      | 75    |                    |           |                 | 589.4   | Zn | 30 |
|         |                        | 83      | 76    |                    |           |                 | 417.2   | Ga | 31 |
|         |                        | 86      | 77    |                    |           |                 | *265.16 | Ge | 32 |
| N = 50  |                        | 89      | 79    |                    |           |                 | 197.2   | As | 33 |
|         |                        | 92      | 80    |                    |           |                 | 207.48  | Se | 34 |
|         |                        | 94      | 83    |                    |           |                 | *827.47 | Br | 35 |
|         | -                      | 97      | 85    | CS                 | 72 96     |                 | *811.52 | Kr | 36 |
|         |                        | 97      | 87    | CS                 | 76 - 96   |                 | 780.0   | Rb | 37 |
|         |                        | 102     | 89    | CS                 | 77 - 100  | 421.7           | 460.86  | Sr | 38 |
|         | )                      | 104     | 91    | CS                 | JYFL 102  |                 | 414.4   | Y  | 39 |
|         |                        | 106     | 94    | CS                 | 87 102    |                 | 388.65  | Zr | 40 |
|         |                        | 109     | 97    | CS                 | 103       |                 | 492.45  | Nb | 41 |
| Defreed |                        | 112     | 100   | CS                 | 108       |                 | 390.41  | Мо | 42 |
| Renaci  | $\left  \right\rangle$ | 113     | 101   |                    |           |                 | 429.82  | Тс | 43 |
| elemen  |                        | 115     | 103   |                    |           |                 | 392.7   | Ru | 44 |
|         |                        | 118     | 105   |                    |           |                 | 369.34  | Rh | 45 |
|         |                        | 124     | 109   |                    |           |                 | 276.39  | Pd | 46 |
|         |                        | 125     | 111   | CS                 | 101 110   |                 | 328.16  | Ag | 47 |
|         |                        | 126     | 112   | CS                 | 102 120   | 214.5           | 326.1   | Cd | 48 |
|         |                        | 133     | 115   | CS                 | 104 - 127 | 236.5           | 451.3   | In | 49 |
| N = 02  | $\int$                 | 136     | 124   | CS, RIMS           | 108 - 132 |                 | 452.5   | Sn | 50 |
|         | -                      |         |       |                    |           |                 |         |    |    |

Refractory lements



# Menu of Isotopes – "High Mass"

|    |    | Wavelengths, nm |       | Laser Spectroscopy      |     | CARIBU |         |   |
|----|----|-----------------|-------|-------------------------|-----|--------|---------|---|
|    |    | I               | II    | LS Method               |     | Range  | > 100/s | ] |
| 51 | Sb | 231.22          |       |                         |     | 124    | 138     | ] |
| 52 | Те | 214.35          |       |                         |     | 129    | 140     | ] |
| 53 | I  | 183.04          |       |                         |     | 131    | 142     | ] |
| 54 | Xe | *882.18         |       | 116 146                 | CS  | 133    | 146     |   |
| 55 | Cs | 455.65          |       | 118 - 146               | CS  | 135    | 148     |   |
| 56 | Ba | 553.7           | 455.4 | 120 – 146,148           | CS  | 137    | 150     | ] |
| 57 | La | 418.84          |       | @ TRIUMF                | CS  | 139    | 152     |   |
| 58 | Ce | 450.64          | 331   | @ JYFL                  | CS  | 141    | 155     |   |
| 59 | Pr | 495.14          | 590   |                         |     | 144    | 157     |   |
| 60 | Nd | 468.34          | 590   | 132 150                 | RIS | 146    | 159     |   |
| 61 | Pm | ?               |       |                         |     | 149    | 161     |   |
| 62 | Sm | 471.71          |       | 138 - 154               | RIS | 151    | 164     |   |
| 63 | Eu | 459.4           | 604.9 | 138 - 159               | RIS | 154    | 166     |   |
| 64 | Gd | 432.71          |       | 14 <mark>6</mark> - 160 | RIS | 156    | 168     |   |
| 65 | Tb | 432.64          |       | 147 159                 | RIS | 159    | 169     |   |
| 66 | Dy | 404.71          |       | 146 165                 | RIS | 162    | 171     |   |
| 67 | Но | 410.38          |       | 151 165                 | RIS | 166    | 171     |   |
| 68 | Er | 415.23          |       | 150 167                 | RIS | 169    | 172     |   |

MOT Collinear

N = 82





## Laser Spectroscopy of Refractory Elements

Laser Spectroscopy of Cooled Zirconium Fission Fragments, P. Campbell et al., PRL 89, 082501 (2002)



Measured <sup>96–102</sup>Zr with yields > 500 s<sup>-1</sup> -> @ CARIBU: <sup>106</sup>Zr ~ 1x10<sup>4</sup> s<sup>-1</sup>
 N=60 shape transition for higher Z: Nb, Mo ... -> <sup>109</sup>Mo, <sup>112</sup>Nb



### **Barium Ion Spectroscopy for EXO**

**EXO** Collaboration



With He as buffer gas and repumping



#### Ion Trap Spectroscopy at CARIBU

Develop linear Paul trap for spectroscopy of neutron-rich Ba isotopes at CARIBU.

To investigate:

- optimized trap geometry and detection system (ion trap simulations)
- Buffer gas cooling + quenching (with H<sub>2</sub>)
- Cooling of trap with LN<sub>2</sub>

More considerations ...

- Use RF cooler / buncher & transfer line
   Also …
  - other CARIBU beams (Sr, Y, Zr ..)
  - Yb<sup>+</sup>, No<sup>+</sup>
  - <sup>229</sup>Th<sup>3+</sup> (isomer from gas catcher)
  - Sympathetic cooling

#### **Ba** Isotopes

|   |     |          |        | -          |
|---|-----|----------|--------|------------|
| 4 |     |          | t_1/2  | yield, 1/s |
|   | 139 | 1.45E-01 | 1.396h | 3.22E+05   |
|   | 140 | 5.16E-01 | 12.75d | 1.15E+06   |
|   | 141 | 1.11E+00 | 18.3 m | 2.46E+06   |
|   | 142 | 2.70E+00 | 10.7 m | 5.99E+06   |
|   | 143 | 4.40E+00 | 14.3 s | 9.77E+06   |
|   | 144 | 3.37E+00 | 11.4 s | 7.48E+06   |
|   | 145 | 2.06E+00 | 4.0 s  | 4.57E+06   |
|   | 146 | 9.81E-01 | 2.20 s | 2.18E+06   |
|   | 147 | 2.50E-01 | 0.892s | 5.55E+05   |
|   | 148 | 4.80E-02 | 0.64 s | 1.07E+05   |
|   | 149 | 4.04E-03 | 0.36 s | 8.97E+03   |
|   | 150 | 3.27E-04 | 0.962s | 7.26E+02   |
|   | 152 | 3.77E-07 | 0.420s | 8.37E-01   |



28



## Thank You!

#### <sup>8</sup>He Collaboration

K. Bailey, R. J. Holt, R. V. F. Janssens, Z.-T. Lu, P.M., T. P. O'Connor, I. Sulai Physics Division, Argonne National Laboratory, USA
M.-G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari, J.A. Alcantara-Nunez, R. Alvez-Conde, M. Dubois, C. Eleon, G. Gaubert, N. Lecesne GANIL, Caen, France
G. W. F. Drake - University of Windsor, Windsor, Canada L.-B. Wang – Los Alamos National Laboratory, USA



www.phy.anl.gov/mep/atta/

